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Abstract

Alignment is the cornerstone of many long-read pipelines and plays an essential role in resolving structural variants (SVs). However,
forced alignments of SVs embedded in long reads, inflexibility of integrating novel SVs models and computational inefficiency remain
problems. Here, we investigate the feasibility of resolving long-read SVs with alignment-free algorithms. We ask: (1) Is it possible to
resolve long-read SVs with alignment-free approaches? and (2) Does it provide an advantage over existing approaches? To this end,
we implemented the framework named Linear, which can flexibly integrate alignment-free algorithms such as the generative model
for long-read SV detection. Furthermore, Linear addresses the problem of compatibility of alignment-free approaches with existing
software. It takes as input long reads and outputs standardized results existing software can directly process. We conducted large-scale
assessments in this work and the results show that the sensitivity, and flexibility of Linear outperform alignment-based pipelines.
Moreover, the computational efficiency is orders of magnitude faster.
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Introduction
Structural variants (SVs) are one of the most prominent topics in
genetics [1, 2]. The topic relates to many fields of research [3]. For
instance, many human diseases, such as autism and cancer, are
associated with genomic rearrangement [4, 5]. In the past years,
comprehensive techniques such as whole genome sequencing of
next-generation sequencing (NGS) were applied to the resolution
of novel SVs [6, 7]. However resolving complex rearrangement
remains challenging in the analysis of long-read SVs [8–10].

Biotechnological advances in sequencing are astounding
and have led to several interesting sequencing platforms with
different key parameters regarding read length, error profile
and sequencing costs [11–13]. Mainstream long-read sequencing
technologies such as Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT) sequencing are different from the
NGS sequencing [14] with respect to read length and error profiles.
Progress in long-read platforms and corresponding pipelines
have facilitated the better prediction of genomic rearrangements
[15, 16]. Short reads are effective in resolving single nucleotide
variants and small insertions and deletions (indels) [11, 17],
whereas larger SVs > 100 bps are more amenable to long-read
sequencing [18, 19]. This is shown in many publications, in which
novel SVs missed by short-read pipelines [20] are resolved by
long-read pipelines [21–26].

Alignment is the cornerstone of long-read SV detection
pipelines, and therefore, fundamental alignment algorithms are

critical to the overall performance of long-read SV detection
pipelines [16, 17, 27, 28]. Unlike short reads, long reads are noisy
and likely to contain complex rearrangements [26, 29]. Efforts
have been made to develop algorithms that can process complex
rearrangements in long reads in the past years. Nevertheless,
aligning long-read complex rearrangements remains difficult,
since long-read alignment algorithms commonly have to seek
a compromise between effectiveness and efficiency [30, 31].
Moreover, aligning SVs-enriched sequences is particularly com-
putationally demanding. Limited by computational complexity,
alignment-based algorithms commonly employ heuristics to sim-
plify the computational complexity, which inevitably introduces
unpredictable bias, such as forced alignment of SVs, into results.
Furthermore, it is challenging to integrate new algorithms of
identifying novel SVs into existing alignment-based frameworks
since aligners commonly require additional optimizations, such
as the hardware acceleration for the identification of insertions
and deletions [32–34], to make the algorithms computationally
practical.

Here, we present an aLIgNment-freE framework for resolving
long-read vARiants named Linear. It takes as input long reads
and outputs alignment-free results compatible with existing
alignment-based software, such as SVs callers and visualization
tools. The framework adopts approaches grounded in the statisti-
cal model with optimizations making the computation efficient.
Large-scale assessments show that Linear can effectively resolve
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different types of long-read SVs. Performance in aspects of
sensitivity, diversity and flexibility is generally better than
aligners. Moreover, Linear requires less memory consumption and
about 3.5% runtime of aligners to run. Therefore it is promising
to develop efficient alignment-free algorithms for long-read SVs
identification based on the framework.

Results
Evaluation of simulated data
Diversity (spectrum) is a key metric for long-read SV detection.
We use different kinds of simulated SVs planted in long reads to
assess the SVs spectrum each software can identify. We particu-
larly evaluated three key parameters of the spectrum, the type of
SVs, the length of SVs and the sequencing error on average.

The dataset comprises 48 groups of SVs embedded in simulated
PacBio and ONT reads. We simulated three different levels of
sequencing error on average, namely 0.5%, 15% and 20% for PacBio
reads, and 10%, 15% and 20% for ONT reads. Sequencing error of
0.5% is to simulate the highly accurate long sequencing reads,
also known as the PacBio HiFi reads, and 10%, 15%, 20% are to
simulate the long raw reads. The PacBio reads are simulated using
PBSIM [35]. The ONT reads are simulated using NanoSim [36].
The error profile of the long reads is based on the alignment
of real long reads downloaded from the project Genome in a
bottle (GiaB) [37, 38]. Furthermore, 12 types of SVs comprising
insertions (INS)/deletions (DEL), duplications (DUP) and inversions
(INV) ranging from 200bps to 1kbps, are independently simulated
and planted at random positions of each simulated read by using
the R package RSVSim [39].

We use long-read aligners Minimap2, NGMLR, SKSV [40], which
is a very efficient SV detector for PacBio HiFi reads, and Linear
to process the simulated reads. We enabled the ‘-x map-pb’, ‘-
x map-ont’ options of Minimap2 and the ‘-x pacbio’, ‘-x ont’
options of NGMLR for PacBio and ONT reads. We run submoduls
of SKSV ‘index’ and ‘aln’ for indexing the reference genomes and
processing reads. We did not use SVs callers due to the following
considerations:

1. Since SVs are simulated with given sizes, types and positions
in reads, it is straightforward to directly compare the results
of each software with the simulated SVs.

2. Forced alignment is a bottleneck of detecting nonlinear SVs
such as INVs and DUPs. SVs callers are unlikely to recover
SVs from forced alignment since forced alignment loses all
information about the SVs.

Therefore, we did not use SVs callers in the assessment of
simulated reads and SVs to eliminate the interference of SVs
caller.

Figure 1 shows the spectrum measured by the recall and the
precision of each software. (Supplementary Figures 1 and 2 are
the spectrum of other long-read aligners). As expected, the align-
ers are significantly more effective in identifying insertions and
deletions than inversions and duplications, since both aligners are
explicitly optimized for insertions and deletions by applying the
convex gap model or the two-stage affine gap model. However, the
downside of the optimization is that it is compute-intensive and
ineffective in identifying inversions and duplications. In contrast,
the overall performance of Linear is comparable to the aligners.
Furthermore, it is notably more effective in identifying inversions
and duplications, particularly in lengths within 500bps. These SVs
are commonly forcibly aligned by aligners and can hardly be cor-
rected by downstream analysis since they lose almost all critical

information of the SVs. In contrast, alignment-free models can
better process these short nonlinear rearrangements embedded
in reads. As a result, Linear identifies a broader spectrum of SVs
than others.

We also assess the deviation of alignment-free results by eval-
uating the distances between detected breakpoints of SVs and
the true ones. Figure 2A shows the overall empirical cumulative
distribution (eCDF) of deviations of breakpoints. The mean of
deviations is 8.54bps and 94.9% are within 25bps. Supplementary
figure 3 shows deviations for each type of simulated SVs in the
assessment. As the control group, we evaluated true positive rates
(TPRs) and false positive rates (FPRs) of regular reads without
SVs planted. Supplementary section 3.4 described the criteria of
the assessment. Figure 2B is the receiver operating characteristic
curve (ROC) curve of Linear and aligners for SVs-free sequences.
We found in the figure that TPRs and FPRs of Linear are compa-
rable to the aligners. Specifically, Minimap2 generates the most
accurate results. The conclusion of SVs-free sequences is con-
sistent with the assessment of simulated SVs, where Minimap2
performs better on collinear SVs (INSs and DELs). The FPRs of
Linear and NGMLR are relatively higher compared to Minimap2.
We investigated the results and found higher FPRs of Linear and
NGMLR for highly repeated regions. However, it is partly due to the
models of Linear and NGMLR tending to resolve repeated regions
as nested structures rather than simple collinear structures and
thus reporting more secondary results, which are regarded as
false positives in the assessment.

Evaluation of genuine data
Data protocol and software compatibility test
We set up the assessment based on datasets of Ashkenazim Trio
HG002 and NA12878 HG001 from GiaB. The assessment data com-
prises PacBio raw reads, HiFi reads and ONT Nanopore sequencing
reads, which can be accessed at the GiaB or the Sequence Read
Archive (SRA) site.

1. HG002 PacBio raw reads: https://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
PacBio_MtSinai_NIST/PacBio_fasta.

2. HG002 PacBio HiFi reads: https://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
PacBio_CCS_15kb_20kb_chemistry2/reads/

3. HG002 ONT reads comprising SRR18363750, SRR18363747,
SRR18363749 archives are from the SRA database.

4. NA12878 PacBio CCS reads comprising SRR1950266-SRR1950
290 archives from the SRA database.

We also use the SVs dataset from https://ftp-trace.ncbi.nlm.
nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/
PacBio_pbsv_05212019/ as the ground truth, which is detected by
Minimap2 and the SVs caller PBSV. We prepared the high-quality
SVs callset based on the dataset by validating its SVs with the
NGMLR-Sniffles pipeline [34]

We tested the compatibility of Linear with PBSV and cuteSV
[41]. We first use Linear to process the PacBio and ONT reads. Then
we use PBSV and cuteSV to call SVs from the results of Linear.
Finally, we filter the results to remove SVs of length � 100bps and
supported by less than 5 reads. Table 1 summarizes the number
of SVs detected by the two pipelines. In the test, PBSV and cuteSV
can directly process the results of Linear and generate the SVs file
correctly. We use PBSV submodules ‘discover’ and ‘call’ for SVs
calling. cuteSV and all other software in the assessment ran with
default parameters tailored for PacBio and ONT reads.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/2/bbad071/7068951 by M

ax-Planck-Institut für m
olekulare G

enetik user on 15 M
ay 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad071#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad071#supplementary-data
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/PacBio_pbsv_05212019/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/PacBio_pbsv_05212019/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/PacBio_pbsv_05212019/
http://PBSV


Statistical models for resolving SVs in long reads | 3

Figure 1. Recall and precision of detecting simulated SVs including (tandem) duplications, inversions, insertions and deletions of different lengths from
200 to 1000bps embedded in long reads of average sequencing error rate 0.05 (simulated HiFi reads), 0.15, 0.2 for PacBio reads, and 0.1, 0.15, 0.2 for ONT
reads. The spectrum are colored according to the recall and the precision of each type of SVs. The bar plots are the average recall and precision of each
software.

We tested the compatibility of Integrative Genomics Viewer
(IGV). Figure 3A is an example of visualized alignment-free results
of HG002 PacBio raw reads comprising a deletion of 844bps.
Expression 11 in the materials and methods section formally
defines the alignment-free cigars, which convert alignment-
free results to the format compatible with IGV. The expression
defines the virtual gaps reflecting the expected deviations of

the results from the true ones. Since the expected deviations of
alignment-free results are commonly less than 50bps, the image
of alignment-free results, such as Figure 3A, comprises many
short random gaps, namely the virtual gaps. However, gaps over
50bps, such as about 844bps in 32× reads, are from a real deletion
since the gap lengths are significantly (P-value < 0.05) larger than
the expected deviation.
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Table 1. Summary of SVs in HG001 and HG002 detected by Linear-based pipelines. The column of ‘Support reads’ is the minimum
supporting reads. Columns of INV, DUP, INS, DEL are identified inversions, duplications, insertions and deletions. Dataset of PacBio
reads are processed by Linear-PBSV. Dataset of ONT reads are processed by Linear-cuteSV

Dataset Platforms Coverage Average length Total SVs Support reads INV DUP INS DEL

Ashkenazim HG002 PacBio raw 55 7912bps 16109 � 5 361 1944 6694 7110
� 10 324 1386 5424 6014

ONT raw 45 7371bps 23866 � 5 117 6383 6171 11194
� 10 79 5095 4891 8930

NA12878 HG001 PacBio HiFi 29 5011bps 16845 � 5 444 3433 5494 7474
� 10 308 1354 3755 5493

Figure 2. (A) is the eCDF of deviations of SVs detected by Linear from the
true ones. (B) as the control, is the ROC curve of long reads without SVs
planted.

Recalling real SVs
Simulation cannot reflect all aspects of biological data. Therefore,
we evaluate the performance of Linear-based pipeline on real
data. It is worth noting that real datasets used as the ground
truth inevitably contain a considerable amount of false negative
and false positive data since the approaches for detecting SVs
are commonly heuristics. It is difficult to precisely evaluate the
recall and precision on real SVs due to lacking ‘gold-standard’
datasets.

Table 2 is the summary of identified SVs in the high-quality
callset of HG001 and HG002. Identified and indicated SVs in
the table are validated by comparing the endpoints of events
detected by Linear to the true ones. The column of PBSV in the
table shows SVs detected by Linear-PBSV. In the results, Linear
can identify most events in the reads, while a considerable
amount of identified events cannot be recalled by PBSV. We
investigated these SVs and found that PBSV successfully detects
the events, but cannot compute the breakpoints for the events
because the deviations of endpoints are beyond the bound of
PBSV for consistent breakpoints. Therefore, PBSV cannot call
them. The performance of Linear-PBSV can be further improved
if the consistency of the breakpoints generated by Linear can be
optimized. Supplementary Figure 4 further shows the deviations
and consistency for the two datasets.

We then evaluate the recall and precision corresponding to the
coverage of reads required to detect SVs. We use the SVs recorded
in the dataset as the true SVs. And the true positive is estimated
by the number of detected true SVs. It is worth noting that the
estimated precision is in fact lower than the exact one, since
a considerable amount of false positives are probably true SVs
that were not found before. Figure 4A is the recall and precision
of Linear. The maximum precision is 80% when the supporting
reads are over 5 (min(NP) = 5). Thus, we assume Linear needs at

least 5 supporting reads to report SVs. Denote NFN the number of
false negatives. Then the maximum coverage of reads required to
report SVs is NFN+min(NP). Figure 4B shows the recall for different
levels of coverage when supporting reads � 5. According to the
figure, 13 ∼ 17× coverage is sufficient to recall about 90% true
SVs with over 5 supporting reads and the precision is about 80%
according to Figure 4A.

Furthermore, we set up three different pipelines combining
cuteSV with Linear, Minimap2 and SKSV. We apply each pipeline to
PacBio raw reads and HiFi reads of HG002. Table 3 shows the recall
and precision of each pipeline. The precision of Linear-cuteSV is
relatively lower than the two other pipelines. We investigated the
results and found that Linear-cuteSV reports significantly more
SVs in the centromere than the two other pipelines. Moreover,
approximately 30% false positives of Linear-cuteSV are in the
centromere. Hence the drop of the precision of Linear-cuteSV
is largely attributable to the repetitive regions. On the other
hand, Linear-cuteSV detects more SVs, 93.2% recall for the raw
read callset and 70.3% recall for the HiFi read callset, than the
two other pipelines. Linear-cuteSV especially performs better for
PacBio raw reads, with very close precision and significantly (25%)
higher recall than Minimap2-cuteSV. The assessment suggests
that Linear-cuteSV is an effective pipeline, which is sensitive
to long-read SVs, although it is probably overconfident in some
highly repeated regions.

Case study of nested SVs
Nested SVs are commonly more complex than basic ones. We
did not analyze nested SVs on a large scale due to lacking ‘gold-
standard’ datasets [17, 42]. Since few existing SVs callers are
capable of calling nested SVs directly, we apply filtration to basic
SVs detected in HG001 and HG002 to search for nested SVs. We
specifically search for nested SVs composed of two overlapped
basic SVs, one of which is the INV, since it is more difficult than
other types of SVs to resolve. In the assessment of simulated SVs
discussed above, we found that short INVs embedded in reads
are commonly forcibly aligned by aligners. In contrast, Linear
performs better in identifying INVs. The assessment of detecting
real SVs is consistent with the simulated assessment in Figure 1,
where aligners are less effective in identifying inversions of �
400bps embedded in noisy reads. For instance, Figure 3B–D shows
the results of the inversion of 184bps hidden in PacBio raw reads.
Furthermore, we found that 95 and 176 candidates of nested SVs
in the HG001 and HG002. Figure 3E and F is two candidates of
nested SVs based on basic SVs detected by Linear. Figure 3E is an
inverted duplication (INVDUP) of 2830bps. Figure 3F is an inverted
deletion (INVDEL) composed of an 800bps deletion and a 322bps
inversion. It is worth noting that models of Linear for nested
SVs are currently built based on features of basic SVs. We can
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Figure 3. (A) is the visualized results of Linear on a subset of HG002 PacBio raw reads comprising a deletion of 844bps. The results are converted to the
BAM format and visualized by IGV. 31× events of deletions are detected. The average length of the reported deletion is 843.16bps. The average deviation
of the detected endpoints of the deletion from the true ones is only 3.19bps. Other random short gaps in the image are virtual indels, which are discussed
in the section of format of alignment-free results, to convert the alignment-free results to the format compatible with IGV. The formal definition of the
conversion is denoted by the cigar operation in expression 11. (B and C) are the alignments of Minimap2 and NGMLR of an inversion embedded in
HG002 PacBio raw reads. (D) is the alignment-free results of the same inversion. (F and F) are alignment-free results of two nested variants, where (E)
contains the so called U-turn of overlapped strands in different colors indicating the event of inverted duplication (INVDUP) and (F) contains the event
of inversion flanked by a deletion (INVDEL).

Table 2. Summary of SVs detected in the high-quality subsets of HG001 and HG002. The column Q1–Q3 are quantiles of estimated
sequencing error. The column ‘identified’ and ‘indicated’ are the SVs, which have � 5 supporting reads identified or indicated by
Linear. The SVs event in the read is identified or indicated by Linear if the deviation of the detected breakpoints of SVs from the true
ones are < 50bps and < 100bps. The column of PBSV are SVs detected by Linear-PBSV

Dataset SVs length Sequencing error Identified Indicated PBSV Type
[bps] [Q1, Q2, Q3] [%] [%] [%]

High-quality subset of < 250 0.093, 0.108, 0.169 97.8 99.1 90.7 INS
Ashkenazim HG002 0.105, 0.151, 0.181 97.6 99.4 96.4 DEL

[250, 500) 0.091, 0.106, 0.153 98.7 99.3 92.8 INS
0.088, 0.132, 0.164 97.3 99.3 97.2 DEL

[500, 750) 0.094, 0.110, 0.141 98.7 99.4 81.9 INS
0.129, 0.175, 0.209 94.3 99.1 96.1 DEL

[750, 1000) 0.090, 0.115, 0.145 97.3 98.7 89.4 INS
0.176, 0.200, 0.260 93.1 98.7 87.5 DEL

� 1000 0.103, 0.144, 0.199 100 100 88.2 INS
0.145, 0.188, 0.272 92.0 99.1 79.8 DEL

High-quality subset of < 250 HiFi reads ≈ 0.5% 96.4 98.8 86.4 INS
NA12878 HG001 98.2 99.5 88.0 DEL

[250, 500) 96.9 98.9 98.8 INS
97.8 99.4 94.1 DEL

[500, 750) 94.7 98.5 94.3 INS
95.6 99.2 87.7 DEL

[750, 1000) 95.0 99.4 97.3 INS
94.6 99.0 100 DEL

� 1000 95.2 99.6 97.7 INS
94.4 98.0 98.4 DEL

further optimize the models provided that high-quality datasets
of nested SVs are available, and thus, the performance would be
substantially improved.

Evaluation of computational performance
Computational efficiency is one of the key measurements
of software. Without loss of generality, we evaluated the
computational performance of Linear and mainstream long-
read aligners based on a subset of HG002 from https://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_

NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta with the id of
‘m150225_013529_42156’. The subset comprises 87999 PacBio raw
reads of 7487bps on average. We use raw reads for the assessment
since raw reads are commonly more compute-intensive than HiFi
reads. We also use the PacBio HiFi reads ‘m64011_190830_220126’
of HG002 from the https://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15
kb_20kb_chemistry2/reads/ for the assessment of SKSV, since
SKSV does not support PacBio raw reads. We use the GRCH38
reference genome and run each software with eight threads on
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Figure 4. Recall and precision of Linear-PBSV on HG002 PacBio raw reads and NA12878 PacBio CCS reads. (A) is the precision versus recall regarding
coverage of reads. (B) is the coverage versus recall. SVs are supported by � 5 reads.

Table 3. Recall and Precision of Linear-cuteSV, Minimap2-cuteSV and SKSV-SKSV on HG002 PacBio raw and HiFi reads. Highlighted
numbers are the best. SKSV is an SV detector integrating the modified cuteSV for SVs calling. It is designed for PacBio HiFi reads. Thus,
rows for PacBio raw reads are empty

Dataset Coverage SVs calller Recall[%] Precision[%]

Linear Aligner SKSV Linear Aligner SKSV

HG002 Raw 72 cuteSV 93.21 67.98 / 75.6 77.84 /
HG002 HiFi 96 cuteSV 70.27 58.37 / 89.15 97.10 /

SKSV / / 59.51 / / 97.70

a machine equipped with 32 cores. We evaluated the memory
footprint and runtime including indexing genomes and running
the long reads.

Figure 5A is the maximum resident memory of each soft-
ware. The memory consumption commonly depends on the size
of reference genomes rather than the size of the dataset of
reads. Linear approximately uses 7GBytes to run long-reads with
GRCH38 reference genomes. It is the most memory-efficient in the
assessment. Supplementary Figure 5 also shows the maximum
resident memory of other software. Figure 5B is the runtime of
each software. Supplementary Figure 6 is the runtime of other
long-read aligners. For comparison, we show the ratio of the
runtime of the software being evaluated and the minimum run-
time of all the software. Minimap2 and NGMLR are two aligners
explicitly optimized for long reads, and thus, they are significantly
faster than other aligners. Linear and SKSV are significantly faster
than the two aligners. Linear is 14 and 75 times faster than
the aligners.

Discussion
Linear is an alignment-free framework compatible with exist-
ing long-read software. To this end, we unified the interface of
alignment-based and alignment-free methods and extended the
standard SAM/BAM format. The assessments in this work suggest

Figure 5. The maximum resident memory and runtime each software
takes to run long reads with the GRCH38 reference genomes. The vertical
axis ‘runtime ratio’ in (B) equals to Tx/TM, where Tx, TM are the runtime
of the software being evaluated and the minimum runtime among all
software.

that software such as samtools, SVs callers and visualization
tool IGV can directly process alignment-free results of Linear.
Furthermore, Linear is an extensible and efficient framework.
We use a multi-layered model to simplify the integration and
evaluation of long-read SVs models. It is worth noting that we
optimized fundamental data structures not discussed here to
balance the overall computational performance of memory usage
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and runtime. It is more efficient and is less affected by com-
putational limitations than most other software. We conducted
assessments on simulated and real datasets to evaluate Linear.
The assessments suggest alignment-free methods can improve
the recall and computational efficiency of long-read SV detection.
It is particularly more effective than aligners in resolving nonlin-
ear SVs, such as inversions and duplications, embedded in long
reads.

In this work, we did not evaluate nested SV detection on a large
scale due to lacking ‘gold-standard’ datasets. The assessment is
complicated by the fact that benchmark datasets may be missing
SVs in the annotation. We also noticed that Linear is probably
overconfident in some highly repeated regions. Its performance
for repetitive regions is not as good as for non-repeating regions.
Thus, we suggest users use more coverage of reads when applying
Linear to identifying SVs in repetitive regions. It is because SVs
models in Linear are currently for generic usage, which is devel-
oped based on the study of basic SVs of non-repeating ones. We
did not fully optimize the models for other types of SVs, such
as repeats. However, as mentioned, Linear is based on a multi-
layered framework which is flexible to extend new models. For
future work, it is possible to integrate more specific and effective
models, such as machine learning, to enhance the performance of
detecting SVs in repetitive regions. Hence it is promising to resolve
diverse long-read SVs better as more and more novel models are
continuously employed.

Materials and methods
Overview of linear
We apply a multi-layered framework (Ln) to Linear. It unifies the
interface of alignment and alignment-free models and simplifies
the evaluation and integration of models.

Denote function fi : Ri → Ri+1 the ith layer of Ln. Then, Ln is
given by

Ln =
n∏

i=1

fi,

where Ri+1 is a subset of Ri and R1 is the Cartesian coordinate
system composed of the references and the read.

Furthermore, we define the following metrics to evaluate the
overall performance of Ln. The error rate of Ln denoted by En is
given by

En = 1 −
n∏

i=1

(1 − ei),

where ei ∈ [0, 1] is the error rate of fi.
The deviation of Ln denoted by Dn is given by

Dn = |Rn+1|√|R1| − 1,

where di = |Ri+1|/
√|Ri| − 1 is the deviation of fi and |Ri| is the size

of Ri. Particularly, di ≈ 0 if fi is the pairwise alignment and di � 0
if fi is an alignment-free function.

The complexity of Ln is given by

On =
n∑

i=1

oi · |Ri|,

where oi is the computational complexity of fi,
We implemented 4 main steps based on the framework to

resolve long-read SVs:

1. We apply the word frequency fingerprint and dynamic pro-
gramming (DP) to validate collinear fragments and search SV
candidates (Supplementary 3.1).

2. We build the generative model to compute the likelihood for
each SVs candidates and construct the graph of events.

3. We apply the generative model with 01∗0 fragments to polish
the SVs candidates and improve the precision of endpoints.

4. We redefine the SAM/BAM for the alignment-free results and
adapt the results to existing pipelines.

Generative model for SVs
We develop the generative model to compute the likelihood of
assembling SVs. Supplementary Figure 7 shows four SV types
built in the generative model. The model is more extensible and
accurate in identifying SVs in secondary short fragments than
models in mainstream aligners designed for simple high-quality
long fragments.

Denote Ai the assembly of i fragments a1, a2, ..., ai. Denote
r1, r2, ..., ri the subsequence of read sequenced from a1, a2, ..., ai

and Ri the subsequence sequenced from Ai. The fragment here
refers to the object that can be assembled, such as k−mers, sub-
alignments, etc. The fragment depends on a group of parameters,
such as length, and sequencing error, based on which we can
compute the likelihood of the occurrence of corresponding subse-
quences. Assuming each rj, 1 � j � i is sequenced independently,
the likelihood of at least one subsequence rj is sequenced from Ai

is given by

Li = L(Ai; Ri)

= (
1 − p(ri|ai)

) · Li−1 + p(ri|ai).
(1)

Assuming each fragment ai is composed of a map m and an
independent gap g at 5′ end, p(ri|ai) is approximated by

p (ri|ai) = pg,m(ri|ai) = pg(ri|ai)pm(ri|ai)

≈ pg
(
lg,i

)
pm

(
lm,i

)
,

(2)

where pg,m is the joint probability of the gap and map of ri. pg,
pm are probabilities of the gap and map of ri. lg,i and lm,i are the
lengths of gaps and maps of ri. Though p(ri|ai) depends on other
parameters such as the sequencing error, we assume the length
lg,i and lm,i are the main parameters to simplify the model. Hence,
we use pg

(
lg,i

)
pm

(
lm,i

)
for approximation in expression 2.

Assuming there are two types of gaps, regular gaps and gaps of
SVs, pg(l) is given by

pg
(
l
) = p(l, r) + p(l, v) − p(l, r)p(l, v), (3)

where p(l, r) and p(l, v) are the probabilities of regular gaps and
gaps of SVs. Since l � 0, we use the cumulative distribution
function (CDF) of gamma distribution denoted by F(x; α, β) to
model the distribution of the length of the regular gap p(l|r). α

and β depend on parameters such as the sequencing error, length
of the fragment and sampling frequency. For fragments of k-
mers, the empirical distributions of the parameters are shown in
Supplementary Figures 8–10. Furthermore, α and β corresponding
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to the parameters are listed in supplementary table 1. Then, p(l, r)
is given by

p(l, r) = p(l|r)p(r) = ωr
(
1 − F

(
l, αr, βr

))
,

where ωr = p(r) is the prior probability that a randomly given gap
is a regular gap.

Assuming the gap of SVs comprising indel (insertion or dele-
tion) and inversion, the probability pv is given by

pl,v = pl,inv + pl,indel − pl,invpl,indel, (4)

where pl,inv = p(l, inv) and pl,indel = p(l, indel) are the probabilities of
the inversion and the indel of length l for simplicity. And pl,indel is
given by

pl,indel = pl,ins(1 − pl,del) + pl,del(1 − pl,ins), (5)

where pl,ins or pl,del is the probability of a gap is an insertion or a
deletion and its length is l.

Given the gap, denote lx and ly the length of corresponding
subsequence of genome and read. Since lx − ly ∈ (−∞, +∞) in the
case of indels. We apply the normal distribution to model plx ,ly |ins

and plx ,ly |del. Assuming priors pins = ωv,1 and pdel = ωv,2, then plx ,ly ,ins,
plx ,ly ,del are given by

{
plx ,ly ,ins = pinsplx ,ly |ins = ωv,1�(ly − lx; μ1, δ1)

plx ,ly ,del = pdelplx ,ly |del = ωv,2�(lx − ly; μ2, δ2),
(6)

where � is the CDF of normal distribution, μ1 μ2 and δ1 δ1 are
means and SDs of ly − lx and lx − ly for insertion and deletion.

Genuine inversion may contain embedded copy number vari-
ation or be flanked by duplications [43]. Here we assume the
distribution of the gap length is irrelevant to the strand of the
sequence for generic modeling, while more accurate model can be
updated based on thorough study in the future. The distribution
of gap length is supposed to be identical whether the sequence is
inverted or not. Thus, we use the gamma distribution to model
plx ,ly ,inv. Denote the prior of the inversion pinv = ωv,3, then the
probability of the inversion plx ,ly ,inv is given by

plx ,ly ,inv = plx ,ly |invpinv

= ωv,3
(
1 − F(lx + ly; αinv, βinv)

)
.

(7)

For the probability of the map denoted by pm(l), assuming
the length of the read is L, we use variable l/L to compute the
likelihood of the corresponding subsequence of map. Though the
Beta family is theoretically better to model l/L ∈ [0, 1]. We use
pm(l) = l/L instead to simplify the computation.

In practice, the CDF for each type of the SV discussed above
is approximated and stored in a table to improve the compu-
tational efficiency. Figure 6 shows two examples of pv, namely
the probability of SVs in expression 4, regarding priors ωv,∗. pv in
Figure 6A has a higher probability for the regular gap as well as
the gap of inversions since pv decreases monotonically as lx or ly
increases. pv in Figure 6B has a higher probability for indels since
pv is maximized at lxly = 0. For instance, pv of an insertion gap,
whose lx = 10bps and ly = 150bps, is larger in Figure 6B than in
Figure 6A.

Figure 6. pv of lx, ly ∈ [0, 150) with different priors ω, where ∗ = 1, 2 and
μ1 = μ2, δ1 = δ2.

Figure 7. Detecting three types of 01 ∗ 0 patterns comprising one gap
by counting leading and trailing zeros colored in the figure with bitwise
operations.

The assembly Â maximizing the likelihood function is given by

L̂(Â; r) = max
i=1,2,..

max
j=1,2,..

Li,j(Ai,j; ri,j),

where Li,j is the jth Li, which has i fragments, defined in the
expression 1. We apply DP to compute L̂. The computation con-
structs a graph of Ai,j whose vertices are ai,j. We compute all Li,j

corresponding to Ai,j and find the maximum value.
The sequencing error is one of the challenges for alignment

and alignment-free approaches. We apply different fragments in
each layer fi to reduce the deviation (di). We specifically use the
01 ∗ 0 pattern, which is a pair of matched k-mers containing one
gap, to approximate the most common 1 − 2bps sequencing error
in long reads [14]. 01 ∗ 0 patterns can be effectively computed by
using bitwise operations. For k-mers s and sn starting from the nth
base, denote h(∗) the function hashing the k−mer to an integer.
For instance, h(A) = 00, h(C) = 01, h(G) = 10, h(T) = 11 in binary.
Denote vn = h(s) ⊕ h(sn) the binary exclusive or values. Denote
ln and tn the leading zero (clz) and the trailing zero (ctz) of vn in
binary. Then, (s, sn) is a 01 ∗ 0 matched pattern if

⎧⎪⎪⎨
⎪⎪⎩

Insertion: tn + ln+1 + 2 − 2k = 0

Mismatch: tn + ln + 2 − 2k = 0

Deletion: ln + tn+1 − 2k = 0.

(8)

In the implementation, clz and ctz are computed by efficient de
Bruijn sequence. Figure 7 illustrates the computation of 01 ∗ 0
pattern. We use the score metric (Supplementary 3.2) to clip the
assembly of fragments.

Format of alignment-free results
We extend the standard SAM/BAM to enable alignment-based
software to utilize alignment-free results. We denote SAM∗ and
SAM∗

0 the new and the standard SAM in the following discussion
for simplicity. SAM∗ is a superset of the SAM∗

0. It supports both
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Table 4. Columns of SAM∗. Sup stands for the supplementary

Col Filed Description Support

1 QNAME Query template NAME Yes
2 FLAG Bitwise FLAG Yes
3 RNAME Reference sequence NAME Yes
4 POS 1-based leftmost POSition Yes
5 MAPQ MAPping Quality Yes
6 CIGAR CIGAR string Extended
7 RNEXT Ref name of the mate/next read Yes
8 PNEXT Pos of the mate/next read Yes
9 TLEN Observed Template LENgth Yes
10 SEQ Segment SEQuence Extended Sup 3.3
11 QUAL Phred-scaled base QUALity+33 Yes
12 TAG Optional tags Extended Sup 3.5

alignment and alignment-free results. Moreover, the SAM∗ of
alignment and the SAM∗

0 of alignment are identical. Columns of
SAM∗ are shown in Table 4.

Cigar of alignment-free result
We define the SAM∗ cigar as follows. Denote p1 = (x1, y1) and
p2 = (x2, y2), two points in the Cartesian coordinate system of the
reference and the read, where x1 � x2 and y1 � y2. Denote p1p2

the arbitrary alignment from p1 to p2. Let cD, cI and cM be the sum
of lengths of deletions, insertions and (mis)matches of p1p2, we
have expression 9

⎧⎪⎨
⎪⎩

cD + cI = x2 − x1 + y2 − y1 − 2cM

cD − cI = x2 − x1 − y2 + y1

cM � min(x2 − x1, y2 − y1).
(9)

We then define the virtual alignment of p1 and p2 based on
the expression. There are two types of deletions and insertions,
namely deletions and insertions of sequencing errors or SVs. Thus,
cD + cI = lv + le, where lv and le are estimated lengths of deletions
and insertions of SVs and sequencing errors. Since SVs are rare in
most sequences (lv = 0). We define the virtual alignment of p1p2

as the one which minimizes lv + le. It can be proved that lv + le is
minimized when cM = min(x2 − x1, y2 − y1), namely

⎧⎪⎨
⎪⎩

cM = x2 − x1

cD = 0
cI = y2 − y1 − cM

or

⎧⎪⎨
⎪⎩

cM = y2 − y1

cD = x2 − x1 − cM

cI = 0.
(10)

Assuming 2 cigars are used for p1p2, then

p1p2 = cMMcD,IG or cD,IGcMM, (11)

where M ∈ {′=′,′ X′,′ M′} and G ∈ {′D′,′ I′}. We use 2 cigars due to the
following considerations.

1. First, virtual alignments of 4, 6, 8... cigars are identical to
those of 2 cigars.

2. Second, virtual alignment of 3, 5, 7... cigars are ambiguous.
Using 3 cigars for points p1, p2 and p3 for instance, cigars
are p1p2 = c1Mc2Ic3M, p2p3 = c4Mc5Ic6M. Then, p1p2p3 =
c1Mc2I(c3 + c4)Mc5Ic6M, where p2 is incorrectly omitted since
c3M and c4M are merged.

Supplementary Figures 11 and 12 are two examples of SAM∗

and cigars defined in the expression 11. And Supplementary

Figure 13 further discusses the estimated deviation of the virtual
alignment.

Key Points

Our main contributions in this paper are as follows:

• We propose the framework grounded in statistics for
resolving structural variants (SVs) in long reads to
eliminate limitations faced by conventional approaches.
To our knowledge, it is the first approach that can
resolve structural variants with completely alignment-
free models.

• We propose a new extension for SAM/BAM format to
connect existing long-read analysis tools to novel sta-
tistical models. The new extension is promising to be
used by other research, which applies novel methods
including machine learning to long-read analysis.

• Our approach has achieved state-of-the-art perfor-
mance for resolving SVs. It is highly flexible and sensi-
tive for identifying SVs hidden in very noisy sequences.

• Linear is ultrafast. It is orders of magnitude faster than
conventional pipelines for the detection of SVs in long
reads. It has the potential for wide-ranging applications
in population-scale long-read research.
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Supplementary data are available online at http://bib.
oxfordjournals.org/.
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